metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Pentaagua(1H-benzimidazole-5,6-dicarboxylato- κN^3)copper(II) pentahydrate

Qian Gao, Wei-Hong Gao, Chao-Yan Zhang and Ya-Bo Xie*

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China Correspondence e-mail: xieyabo@bjut.edu.cn

Received 19 November 2007; accepted 11 June 2008

Key indicators: single-crystal X-ray study: T = 296 K: mean $\sigma(C-C) = 0.004$ Å: R factor = 0.034; wR factor = 0.093; data-to-parameter ratio = 10.7.

The title compound, $[Cu(C_9H_4N_2O_4)(H_2O_5)]$ ·5H₂O, contains one crystallographically independent Cu^{II} atom and one 1Hbenzimidazole-5,6-dicarboxylate (bdc) ligand, along with five coordinated and five uncoordinated water molecules. The Cu^{II} atom is six-coordinated by one N atom from the bdc ligand and five O atoms from water molecules, giving an octahedral coordination geometry. Hydrogen bonds link the mononuclear complex and uncoordinated water molecules into a three-dimensional network.

Related literature

For related literature, see: Lemos et al. (2004); Park et al. (2006); Zhang et al. (2007).

Experimental

Crystal data

$[Cu(C_9H_4N_2O_4)(H_2O_5]\cdot 5H_2O$	$\gamma = 74.8804 \ (1)^{\circ}$
$M_r = 447.84$	$V = 903.29 (11) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 6.8449 (5) Å	Mo $K\alpha$ radiation
b = 11.4381 (8) Å	$\mu = 1.28 \text{ mm}^{-1}$
c = 12.3549 (9) Å	T = 296 (2) K
$\alpha = 78.1549 \ (1)^{\circ}$	$0.24 \times 0.24 \times 0.24$ mm
$\beta = 78.6224 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\rm min} = 0.748, T_{\rm max} = 0.748$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.092$	independent and constrained
S = 1.05	refinement
3164 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
295 parameters	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$
20 restraints	

4648 measured reflections

 $R_{\rm int} = 0.018$

3164 independent reflections

2774 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O10W-H10A\cdots O1W^{i}$	0.80 (3)	2.09 (3)	2.855 (3)	160 (4)
$O10W - H10B \cdot \cdot \cdot O3^{ii}$	0.81 (3)	2.05 (3)	2.802 (3)	155 (4)
O9W−H9B···O4 ⁱⁱⁱ	0.81 (3)	1.94 (3)	2.739 (3)	174 (4)
$O7W - H7B \cdots O6W$	0.83 (3)	1.95 (3)	2.758 (4)	166 (4)
$O7W - H7A \cdots O3$	0.81 (3)	1.94 (3)	2.735 (3)	165 (4)
$O6W - H6C \cdot \cdot \cdot O2$	0.79 (3)	2.03 (3)	2.773 (3)	156 (5)
$O6W - H6B \cdot \cdot \cdot O1^{iv}$	0.84 (3)	1.96 (3)	2.772 (4)	162 (5)
$O5W-H5A\cdots O2^{v}$	0.78(2)	1.84 (3)	2.611 (3)	170 (4)
$O5W - H5B \cdots O10W$	0.80(2)	2.01 (3)	2.793 (3)	169 (4)
$O4W-H4A\cdots O10W^{vi}$	0.81(3)	1.96 (3)	2.760 (3)	168 (5)
$O4W - H4B \cdot \cdot \cdot O7W^{ii}$	0.79 (3)	1.97 (3)	2.723 (4)	160 (5)
$O3W - H3C \cdot \cdot \cdot O9W^{i}$	0.78(2)	2.05 (3)	2.820 (3)	172 (4)
$O3W - H3B \cdot \cdot \cdot O3^{ii}$	0.81(2)	2.00(3)	2.800 (3)	170 (4)
$O2W-H2A\cdots O4^{vii}$	0.82(3)	1.93 (3)	2.709 (3)	160 (4)
$O2W - H2B \cdots O9W$	0.80(3)	1.94 (3)	2.735 (3)	172 (4)
$O1W - H1D \cdots O1^{v}$	0.78 (2)	1.85 (3)	2.621 (3)	170 (4)
N1-H1 A ···O7 W^{iii}	0.86	1.97	2.805 (3)	163

Symmetry codes: (i) x + 1, y, z; (ii) x, y + 1, z; (iii) -x + 1, -y + 1, -z; (iv) x - 1, y, z; (v) - x + 1, -y + 1, -z + 1; (vi) - x + 1, -y + 2, -z + 1; (vii) x - 1, y + 1, z.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2082).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Lemos, S. S., Deflon, V. M., Bessler, K. E., Abbott, M. P. & Niquet, E. (2004). Transition Met. Chem. 29, 46-50.
- Park, K. S., Ni, Z., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186-10191.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, X.-M., Hao, Z.-M., Zhang, W.-X. & Chen, X.-M. (2007). Angew. Chem. Int. Ed. 46, 3456-3459.

supplementary materials

Acta Cryst. (2008). E64, m928 [doi:10.1107/S1600536808017595]

Pentaaqua(1*H*-benzimidazole-5,6-dicarboxylato- κN^3)copper(II) pentahydrate

Q. Gao, W.-H. Gao, C.-Y. Zhang and Y.-B. Xie

Comment

Several coordination polymers formed by the ligand 1H-benzoimidazole-5,6-dicarboxylic acid have been reported recently: μ^2 -2,2'-Bibenzimidazolato-N',N",N"')tetrakis (triphenylphosphine)-di-copper(I) dichloromethane solvate (Lemos et al., 2004), catena-poly [tetrakis(μ^2 Benzimidazolato-N,N')-di-Co(II) unknown clathrate hydrate] (Park et al., 2006), and catena-poly [bis (μ^5 Benzotriazole-5-carboxylate) -bis(μ^2 -hydroxo)-tri-Co(II)] (Zhang et al., 2007) The first complex is a binuclear structure and the latter two are 3D porous metal-organic frameworks. However, up to now, the Cu^{II} complex of the 1H-benzoimidazole-5,6-dicarboxylic acid ligand (H₂L), has not been reported.

As shown in Figure 1, the title compound has a mononuclear structure, in which there exists only one crystallographically independent Cu (II) atom and only one 1H-benzoimidazole-5,6-dicarboxylate ligand, along with five coordinated and five uncoordinated water. Each Cu (II) is six-coordinated with one N atom from the ligand, and five O atoms from water molecules, giving an octahedral coordination geometry. Hydrogen bonds link the mononuclear complex and uncoordinated water molecules into a three-dimensional network.

Experimental

The title complex was synthesized by carefully layering a solution of $Cu(NO_3)_2.3H_2O$ (24 mg, 0.1 mmol) in MeOH (10 ml) on top of a solution of H₂L (27 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H₂O (10 ml) in a test-tube. After about several months at room temperature, green block-shaped single crystals suitable for X-ray investigation appeared at the boundary between MeOH and H₂O with a yield of 25%.

Refinement

H atoms of C were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2 U_{eq}(C,N)$. The H atoms of the water molecules were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.5 times those of the parent O atoms.

Figures

Fig. 1. Structure of the title complex, showing displacement ellipsoids at the 30% probability level.

$Pentaaqua (1 \textit{H-benzimidazole-5,6-dicarboxylato-} \kappa N^3) copper (II) \ pentahydrate$

Crystal data

$[Cu(C_9H_4N_2O_4)(H_2O)_5].5H_2O$	Z = 2
$M_r = 447.84$	$F_{000} = 466$
Triclinic, PT	$D_{\rm x} = 1.647 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 6.8449 (5) Å	Cell parameters from 2164 reflections
b = 11.4381 (8) Å	$\theta = 2.7 - 27.7^{\circ}$
c = 12.3549 (9) Å	$\mu = 1.28 \text{ mm}^{-1}$
$\alpha = 78.1549 \ (1)^{\circ}$	T = 296 (2) K
$\beta = 78.6224 \ (1)^{\circ}$	Block, green
$\gamma = 74.8804 \ (1)^{\circ}$	$0.24 \times 0.24 \times 0.24 \text{ mm}$
$V = 903.29 (11) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	3164 independent reflections
Radiation source: fine-focus sealed tube	2774 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
T = 296(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -8 \rightarrow 7$
$T_{\min} = 0.748, \ T_{\max} = 0.748$	$k = -13 \rightarrow 9$
4648 measured reflections	$l = -14 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.092$	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 1.2855P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
3164 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
295 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
20 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

sup-2

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu2	0.40064 (5)	0.90276 (3)	0.25900 (3)	0.01956 (13)
C1	0.5610 (5)	0.7927 (3)	0.0504 (2)	0.0208 (6)
H1B	0.5372	0.8719	0.0100	0.025*
C2	0.5701 (4)	0.6408 (2)	0.1857 (2)	0.0155 (6)
C3	0.5523 (4)	0.5625 (2)	0.2878 (2)	0.0164 (6)
H3A	0.4908	0.5933	0.3535	0.020*
C4	0.6288 (4)	0.4374 (2)	0.2891 (2)	0.0164 (6)
C5	0.7248 (4)	0.3904 (3)	0.1890 (2)	0.0174 (6)
C6	0.7410 (5)	0.4686 (3)	0.0879 (2)	0.0209 (6)
H6A	0.8036	0.4385	0.0220	0.025*
C7	0.6613 (4)	0.5927 (3)	0.0878 (2)	0.0188 (6)
C8	0.6183 (4)	0.3556 (2)	0.4017 (2)	0.0181 (6)
С9	0.7972 (5)	0.2539 (3)	0.1890 (2)	0.0200 (6)
N1	0.6497 (4)	0.6937 (2)	0.0032 (2)	0.0232 (6)
H1A	0.6921	0.6925	-0.0670	0.028*
N2	0.5095 (4)	0.7684 (2)	0.16013 (19)	0.0178 (5)
01	0.7832 (3)	0.3070 (2)	0.43846 (19)	0.0333 (6)
O1W	0.1811 (3)	0.8182 (2)	0.36057 (18)	0.0231 (5)
H1D	0.206 (6)	0.780 (3)	0.418 (2)	0.035*
H1C	0.145 (6)	0.774 (3)	0.331 (3)	0.035*
02	0.4460 (3)	0.3461 (2)	0.45410 (18)	0.0296 (5)
O2W	0.2065 (4)	0.9916 (2)	0.14521 (19)	0.0267 (5)
H2B	0.151 (6)	0.950 (3)	0.122 (3)	0.040*
H2A	0.119 (5)	1.055 (3)	0.154 (3)	0.040*
03	0.6926 (3)	0.18604 (18)	0.25581 (18)	0.0281 (5)
O3W	0.6198 (3)	0.9979 (2)	0.16683 (18)	0.0236 (5)
H3B	0.652 (6)	1.045 (3)	0.196 (3)	0.035*
H3C	0.719 (5)	0.957 (3)	0.139 (3)	0.035*
O4	0.9510 (3)	0.21717 (19)	0.12100 (18)	0.0296 (5)
O4W	0.2824 (5)	1.0432 (2)	0.3484 (2)	0.0410 (7)
H4B	0.255 (7)	1.113 (3)	0.320 (4)	0.061*
H4A	0.275 (7)	1.030 (4)	0.416 (2)	0.061*
O5W	0.6079 (3)	0.8194 (2)	0.36953 (18)	0.0241 (5)

supplementary materials

H5B	0.647 (6)	0.873 (3)	0.385 (3)	0.036*
H5A	0.579 (6)	0.775 (3)	0.424 (2)	0.036*
O6W	0.0815 (4)	0.4415 (2)	0.3683 (2)	0.0397 (6)
H6B	-0.005 (6)	0.402 (4)	0.403 (4)	0.060*
H6C	0.164 (6)	0.421 (4)	0.410 (3)	0.060*
O7W	0.2891 (4)	0.2718 (2)	0.2314 (2)	0.0330 (5)
H7A	0.406 (4)	0.257 (4)	0.244 (4)	0.050*
H7B	0.224 (6)	0.331 (3)	0.262 (3)	0.050*
O8W	0.9900 (4)	0.6813 (2)	0.2776 (2)	0.0353 (6)
H8B	0.874 (4)	0.710 (4)	0.303 (3)	0.053*
H8A	1.008 (7)	0.609 (3)	0.303 (4)	0.053*
O9W	-0.0044 (4)	0.8476 (2)	0.0862 (2)	0.0339 (6)
H9B	0.018 (7)	0.825 (4)	0.027 (3)	0.051*
H9A	0.013 (7)	0.789 (3)	0.133 (3)	0.051*
O10W	0.8011 (4)	0.9835 (2)	0.4212 (2)	0.0312 (5)
H10B	0.779 (6)	1.053 (3)	0.387 (3)	0.047*
H10A	0.919 (4)	0.953 (4)	0.402 (3)	0.047*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu2	0.0244 (2)	0.0145 (2)	0.0180 (2)	-0.00297 (14)	-0.00237 (14)	-0.00150 (14)
C1	0.0287 (16)	0.0122 (14)	0.0197 (15)	-0.0042 (12)	-0.0049 (12)	0.0018 (11)
C2	0.0185 (14)	0.0112 (13)	0.0165 (14)	-0.0022 (11)	-0.0039 (11)	-0.0021 (11)
C3	0.0208 (15)	0.0161 (14)	0.0120 (13)	-0.0041 (11)	-0.0004 (11)	-0.0040 (11)
C4	0.0193 (14)	0.0141 (14)	0.0159 (14)	-0.0041 (11)	-0.0056 (11)	0.0005 (11)
C5	0.0193 (14)	0.0140 (14)	0.0183 (14)	-0.0022 (11)	-0.0033 (11)	-0.0031 (11)
C6	0.0280 (16)	0.0184 (15)	0.0141 (14)	-0.0040 (12)	0.0024 (12)	-0.0046 (11)
C7	0.0242 (15)	0.0157 (14)	0.0146 (14)	-0.0038 (12)	-0.0028 (11)	0.0010 (11)
C8	0.0270 (16)	0.0118 (14)	0.0153 (14)	-0.0054 (12)	-0.0039 (12)	0.0000 (11)
C9	0.0253 (16)	0.0148 (14)	0.0203 (15)	-0.0010 (12)	-0.0084 (12)	-0.0037 (12)
N1	0.0372 (15)	0.0161 (13)	0.0117 (12)	-0.0040 (11)	0.0002 (11)	0.0016 (10)
N2	0.0240 (13)	0.0106 (12)	0.0168 (12)	-0.0022 (10)	-0.0031 (10)	-0.0002 (9)
01	0.0296 (13)	0.0388 (14)	0.0270 (12)	-0.0103 (10)	-0.0113 (10)	0.0145 (10)
O1W	0.0278 (12)	0.0234 (12)	0.0173 (11)	-0.0090 (9)	-0.0051 (9)	0.0038 (9)
02	0.0263 (12)	0.0315 (13)	0.0239 (12)	-0.0079 (10)	-0.0016 (9)	0.0111 (10)
O2W	0.0290 (13)	0.0182 (12)	0.0315 (12)	0.0036 (9)	-0.0134 (10)	-0.0038 (10)
03	0.0342 (13)	0.0142 (11)	0.0338 (13)	-0.0069 (9)	-0.0013 (10)	-0.0013 (9)
O3W	0.0270 (12)	0.0193 (11)	0.0253 (12)	-0.0088 (9)	0.0003 (9)	-0.0050 (9)
04	0.0333 (13)	0.0177 (11)	0.0302 (12)	0.0044 (9)	0.0016 (10)	-0.0061 (9)
O4W	0.0744 (19)	0.0175 (12)	0.0255 (13)	-0.0081 (12)	0.0065 (13)	-0.0079 (11)
O5W	0.0322 (12)	0.0231 (12)	0.0182 (11)	-0.0122 (10)	-0.0075 (9)	0.0053 (9)
O6W	0.0334 (15)	0.0358 (15)	0.0475 (17)	-0.0081 (12)	-0.0107 (12)	0.0035 (12)
O7W	0.0357 (14)	0.0362 (14)	0.0265 (12)	-0.0074 (12)	-0.0041 (11)	-0.0054 (10)
O8W	0.0307 (13)	0.0291 (13)	0.0446 (15)	-0.0055 (11)	-0.0069 (11)	-0.0029 (11)
O9W	0.0407 (14)	0.0334 (14)	0.0280 (13)	-0.0050 (11)	-0.0076 (11)	-0.0080 (11)
O10W	0.0313 (13)	0.0268 (13)	0.0305 (13)	-0.0033 (11)	-0.0033 (11)	0.0007 (10)

Geometric parameters (Å, °)

Cu2—O4W	2.037 (2)	С9—О4	1.248 (4)
Cu2—O2W	2.055 (2)	С9—ОЗ	1.261 (4)
Cu2—N2	2.055 (2)	N1—H1A	0.8600
Cu2—O1W	2.070 (2)	O1W—H1D	0.78 (2)
Cu2—O5W	2.076 (2)	O1W—H1C	0.80(2)
Cu2—O3W	2.097 (2)	O2W—H2B	0.80 (3)
C1—N2	1.322 (4)	O2W—H2A	0.82 (3)
C1—N1	1.328 (4)	O3W—H3B	0.81 (2)
C1—H1B	0.9300	O3W—H3C	0.78 (2)
C2—C3	1.393 (4)	O4W—H4B	0.79 (3)
C2—N2	1.396 (3)	O4W—H4A	0.81 (3)
C2—C7	1.397 (4)	O5W—H5B	0.80(2)
C3—C4	1.387 (4)	O5W—H5A	0.78 (2)
С3—НЗА	0.9300	O6W—H6B	0.84 (3)
C4—C5	1.420 (4)	O6W—H6C	0.79 (3)
C4—C8	1.510 (4)	O7W—H7A	0.81 (3)
C5—C6	1.382 (4)	O7W—H7B	0.83 (3)
С5—С9	1.510 (4)	O8W—H8B	0.80(3)
C6—C7	1.381 (4)	O8W—H8A	0.81 (3)
С6—Н6А	0.9300	O9W—H9B	0.81 (3)
C7—N1	1.387 (4)	O9W—H9A	0.79 (3)
C8—O2	1.248 (4)	O10W—H10B	0.81 (3)
C8—O1	1.249 (4)	O10W—H10A	0.80 (3)
O4W—Cu2—O2W	88.82 (10)	C6—C7—C2	122.3 (3)
O4W—Cu2—N2	176.07 (10)	N1—C7—C2	105.0 (2)
O2W—Cu2—N2	87.32 (9)	O2—C8—O1	124.5 (3)
O4W—Cu2—O1W	86.06 (10)	O2—C8—C4	118.2 (2)
O2W—Cu2—O1W	92.49 (9)	O1—C8—C4	117.3 (3)
N2—Cu2—O1W	94.83 (9)	O4—C9—O3	125.0 (3)
O4W—Cu2—O5W	90.71 (11)	O4—C9—C5	117.9 (3)
O2W—Cu2—O5W	176.77 (9)	O3—C9—C5	117.0 (3)
N2—Cu2—O5W	93.11 (9)	C1—N1—C7	107.4 (2)
O1W—Cu2—O5W	90.66 (9)	C1—N1—H1A	126.3
O4W—Cu2—O3W	89.28 (10)	C7—N1—H1A	126.3
O2W—Cu2—O3W	89.14 (9)	C1—N2—C2	104.4 (2)
N2—Cu2—O3W	89.94 (9)	C1—N2—Cu2	122.93 (19)
O1W—Cu2—O3W	175.03 (9)	C2—N2—Cu2	132.25 (19)
O5W—Cu2—O3W	87.67 (9)	Cu2—O1W—H1D	118 (3)
N2-C1-N1	113.8 (2)	Cu2—O1W—H1C	113 (3)
N2—C1—H1B	123.1	H1D—O1W—H1C	106 (4)
N1—C1—H1B	123.1	Cu2—O2W—H2B	117 (3)
C3—C2—N2	130.6 (3)	Cu2—O2W—H2A	123 (3)
C3—C2—C7	120.0 (3)	H2B—O2W—H2A	105 (4)
N2-C2-C7	109.4 (2)	Cu2—O3W—H3B	118 (3)
C4—C3—C2	118.3 (3)	Cu2—O3W—H3C	115 (3)
С4—С3—НЗА	120.8	H3B—O3W—H3C	109 (4)

supplementary materials

С2—С3—НЗА	120.8	Cu2—O4W—H4B	123 (3)
C3—C4—C5	120.9 (3)	Cu2—O4W—H4A	120 (3)
C3—C4—C8	117.1 (2)	H4B—O4W—H4A	116 (5)
C5—C4—C8	121.9 (2)	Cu2—O5W—H5B	107 (3)
C6—C5—C4	120.5 (3)	Cu2—O5W—H5A	122 (3)
С6—С5—С9	118.4 (3)	H5B—O5W—H5A	109 (4)
C4—C5—C9	121.0 (3)	H6B—O6W—H6C	100 (5)
С7—С6—С5	117.9 (3)	H7A—O7W—H7B	107 (4)
С7—С6—Н6А	121.0	H8B—O8W—H8A	104 (5)
С5—С6—Н6А	121.0	H9B—O9W—H9A	108 (4)
C6—C7—N1	132.7 (3)	H10B—O10W—H10A	107 (4)
N2-C2-C3-C4	-179.4 (3)	C4—C5—C9—O4	-148.5 (3)
C7—C2—C3—C4	0.6 (4)	C6—C5—C9—O3	-141.7 (3)
C2—C3—C4—C5	0.7 (4)	C4—C5—C9—O3	33.8 (4)
C2—C3—C4—C8	176.6 (3)	N2-C1-N1-C7	-0.4 (4)
C3—C4—C5—C6	-1.1 (4)	C6—C7—N1—C1	-178.6 (3)
C8—C4—C5—C6	-176.7 (3)	C2—C7—N1—C1	1.0 (3)
C3—C4—C5—C9	-176.4 (3)	N1-C1-N2-C2	-0.5 (3)
C8—C4—C5—C9	7.9 (4)	N1-C1-N2-Cu2	172.7 (2)
C4—C5—C6—C7	0.1 (4)	C3—C2—N2—C1	-178.9 (3)
С9—С5—С6—С7	175.5 (3)	C7—C2—N2—C1	1.1 (3)
C5-C6-C7-N1	-179.2 (3)	C3—C2—N2—Cu2	8.8 (5)
С5—С6—С7—С2	1.3 (5)	C7—C2—N2—Cu2	-171.1 (2)
С3—С2—С7—С6	-1.6 (5)	O2W—Cu2—N2—C1	47.3 (2)
N2-C2-C7-C6	178.3 (3)	O1W—Cu2—N2—C1	139.6 (2)
C3-C2-C7-N1	178.7 (3)	O5W—Cu2—N2—C1	-129.5 (2)
N2-C2-C7-N1	-1.3 (3)	O3W—Cu2—N2—C1	-41.8 (2)
C3—C4—C8—O2	67.2 (4)	O2W—Cu2—N2—C2	-141.6 (3)
C5—C4—C8—O2	-116.9 (3)	O1W—Cu2—N2—C2	-49.4 (3)
C3—C4—C8—O1	-109.2 (3)	O5W—Cu2—N2—C2	41.6 (3)
C5—C4—C8—O1	66.7 (4)	O3W—Cu2—N2—C2	129.2 (3)
C6—C5—C9—O4	36.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O10W—H10A…O1W ⁱ	0.80 (3)	2.09 (3)	2.855 (3)	160 (4)
O10W—H10B···O3 ⁱⁱ	0.81 (3)	2.05 (3)	2.802 (3)	155 (4)
O9W—H9B…O4 ⁱⁱⁱ	0.81 (3)	1.94 (3)	2.739 (3)	174 (4)
O7W—H7B···O6W	0.83 (3)	1.95 (3)	2.758 (4)	166 (4)
O7W—H7A···O3	0.81 (3)	1.94 (3)	2.735 (3)	165 (4)
O6W—H6C…O2	0.79 (3)	2.03 (3)	2.773 (3)	156 (5)
O6W—H6B···O1 ^{iv}	0.84 (3)	1.96 (3)	2.772 (4)	162 (5)
O5W—H5A···O2 ^v	0.78 (2)	1.84 (3)	2.611 (3)	170 (4)
O5W—H5B…O10W	0.80 (2)	2.01 (3)	2.793 (3)	169 (4)
O4W—H4A…O10W ^{vi}	0.81 (3)	1.96 (3)	2.760 (3)	168 (5)
O4W—H4B…O7W ⁱⁱ	0.79 (3)	1.97 (3)	2.723 (4)	160 (5)

O3W—H3C···O9W ⁱ	0.78 (2)	2.05 (3)	2.820 (3)	172 (4)
O3W—H3B···O3 ⁱⁱ	0.81 (2)	2.00 (3)	2.800 (3)	170 (4)
O2W—H2A····O4 ^{vii}	0.82 (3)	1.93 (3)	2.709 (3)	160 (4)
O2W—H2B···O9W	0.80 (3)	1.94 (3)	2.735 (3)	172 (4)
O1W—H1D···O1 ^v	0.78 (2)	1.85 (3)	2.621 (3)	170 (4)
N1—H1A····O7W ⁱⁱⁱ	0.86	1.97	2.805 (3)	163
	1 1 (1)	1 () 1	1 1 () 11	

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, -*y*+1, -*z*; (iv) *x*-1, *y*, *z*; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) *x*-1, *y*+1, *z*.

